Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Increases in evapotranspiration (ET) from global warming are decreasing streamflow in headwater basins worldwide. However, these streamflow losses do not occur uniformly due to complex topography. To better understand the heterogeneity of streamflow loss, we use the Budyko shape parameter (ω) as a diagnostic tool. We fit ω to 37-year of hydrologic simulation output in the Upper Colorado River Basin (UCRB), an important headwater basin in the US. We split the UCRB into two categories: peak watersheds with high elevation and steep slopes, and valley watersheds with lower elevation and gradual slopes. Our results demonstrate a relationship between streamflow loss and ω. The valley watersheds with greater streamflow loss have ω higher than 3.1, while the peak watersheds with less streamflow loss have an average ω of 1.3. This work highlights the use of ω as an indicator of streamflow loss and could be generalized to other headwater basin systems.more » « less
-
Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex catchment processes and their responses to a changing climate. However, calibrating these PB simulators using observed data remains a significant challenge due to several persistent issues, including the following: (1) intractability stemming from the computational demands and complex responses of simulators, which renders infeasible calculation of the conditional probability of parameters and data, and (2) uncertainty stemming from the choice of simplified representations of complex natural hydrologic processes. Here, we demonstrate how simulation-based inference (SBI) can help address both of these challenges with respect to parameter estimation. SBI uses a learned mapping between the parameter space and observed data to estimate parameters for the generation of calibrated simulations. To demonstrate the potential of SBI in hydrologic modeling, we conduct a set of synthetic experiments to infer two common physical parameters – Manning's coefficient and hydraulic conductivity – using a representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep-learning (DL) components to the SBI approach, including an “emulator” as a surrogate for the PB simulator to rapidly explore parameter responses. We also employ a density-based neural network to represent the joint probability of parameters and data without strong assumptions about its functional form. While addressing intractability, we also show that, if the simulator does not represent the system under study well enough, SBI can yield unreliable parameter estimates. Approaches to adopting the SBI framework for cases in which multiple simulator(s) may be adequate are introduced using a performance-weighting approach. The synthetic experiments presented here test the performance of SBI, using the relationship between the surrogate and PB simulators as a proxy for the real case.more » « less
-
Abstract This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three‐dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations.R‐squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically‐informed estimates. The results of this work are used to inform a follow‐on study that tests additional data‐driven approaches in multiple basins within the contiguous United States.more » « less
-
Abstract Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding the terrestrial water cycle. However, scientific progress in tracking water parcels at large‐scale with high spatiotemporal resolutions is far behind that in simulating water balance/quantity owing to the lack of powerful modeling tools. EcoSLIM is a particle tracking model working with ParFlow‐CLM that couples integrated surface‐subsurface hydrology with land surface processes. Here, we demonstrate a parallel framework on distributed, multi‐Graphics Processing Unit platforms with Compute Unified Device Architecture‐Aware Message Passing Interface for accelerating EcoSLIM to continental‐scale. In tests from catchment‐, to regional‐, and then to continental‐scale using 25‐million to 1.6‐billion particles, EcoSLIM shows significant speedup and excellent parallel performance. The parallel framework is portable to atmospheric and oceanic particle tracking models, where the parallelization is inadequate, and a standard parallel framework is also absent. The parallelized EcoSLIM is a promising tool to accelerate our understanding of the terrestrial water cycle and the upscaling of subsurface hydrology to Earth System Models.more » « less
-
While machine learning approaches are rapidly being applied to hydrologic problems, physics-informed approaches are still relatively rare. Many successful deep-learning applications have focused on point estimates of streamflow trained on stream gauge observations over time. While these approaches show promise for some applications, there is a need for distributed approaches that can produce accurate two-dimensional results of model states, such as ponded water depth. Here, we demonstrate a 2D emulator of the Tilted V catchment benchmark problem with solutions provided by the integrated hydrology model ParFlow. This emulator model can use 2D Convolution Neural Network (CNN), 3D CNN, and U-Net machine learning architectures and produces time-dependent spatial maps of ponded water depth from which hydrographs and other hydrologic quantities of interest may be derived. A comparison of different deep learning architectures and hyperparameters is presented with particular focus on approaches such as 3D CNN (that have a time-dependent learning component) and 2D CNN and U-Net approaches (that use only the current model state to predict the next state in time). In addition to testing model performance, we also use a simplified simulation based inference approach to evaluate the ability to calibrate the emulator to randomly selected simulations and the match between ML calibrated input parameters and underlying physics-based simulation.more » « less
-
Physical aquifer models are a highly effective teaching tool for hydrology education, however they come with inherent limitations that include the high cost to purchase, the static configuration of the model materials, the time required to visualize hydrogeological phenomena, and the effort to reset and clean them over time. To address these and other limitations, we have developed an interactive computer simulation of a physical aquifer model called the ParFlow Sandtank. In this gamified interface, users run the simulation using a familiar web-app like interface with sliders and buttons while learning real hydrologic concepts. Our user interface allows participants to dive into the world of hydrology, understanding assumptions about model parameters such as hydraulic conductivity, making decisions about inputs to groundwater aquifer systems such as pumping rates, visualizing outputs such as stream flow, transport, and saturation, and exploring various factors that impact real environmental systems such as climate change. The ParFlow Sandtank has already been used in a variety of educational settings with more than 9,000 users per year, and we feel this emerging educational tool can be used broadly in educational environments and can be scaled-up to provide greater accessibility for students and educators. Here we present the capabilities and workflow of the ParFlow Sandtank, two use cases, and additional tools and custom templates that have been developed to support and enhance the reach of the ParFlow Sandtank.more » « less
An official website of the United States government
